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Dynamics of Colloidal Particles in Soft Matters

Takeaki Araki∗) and Hajime Tanaka∗∗)

Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan

We developed numerical methods for studying the dynamics of colloidal particles sus-
pended in complex fluids. It is essential to employ a coarse-grained model for studying slow
dynamics of these systems. Our methods are based on the “fluid particle dynamics (FPD)”
method, which we have developed to deal with hydrodynamic interactions in colloidal sys-
tems in an efficient manner. We regard a solid particle as an undeformable fluid one. It has
a viscosity much higher than the solvent, which smoothly changes to the solvent viscosity at
the interface. This methods allows us to avoid troublesome boundary conditions to be satis-
fied on the surfaces of mobile particles. Since we express the spatial distribution of colloids
as a continuum field, we can easily introduce the order parameter describing a complex sol-
vent, e.g., ion distribution for charged colloids, director field for nematic liquid crystal, and
concentration for phase-separating binary fluid. Then we solve coupled dynamic equations
of three relevant parameters, i.e., particle positions, flow field, and the order parameter. We
demonstrate a few examples of such simulations.

§1. Introduction

Recently, suspensions of colloids or nanoparticles in complex fluids have
attracted considerable attentions from both the fundamental and practical view-
points.1)–11) For example, particles dispersed in a nematic liquid crystal have an
anisotropic and non-pairwise interaction mediated by the elastic field of a nematic
solvent.1)–3) This peculiar interaction yields an unusual soft solid made of colloid-
liquid crystal composites.4) It was also shown that neutrally wettable particles in a
phase-separated binary fluid are strongly bound on the interface of the two phases.
which leads to a glassy state of Pickering emulsion.5)

Numerical simulations are very powerful and useful tools to study the dynamic
properties of these colloidal systems. However, there remain some difficulties origi-
nating from multi-scale hierarchies in time and space. For example, if we try to sim-
ulate an aqueous suspension of colloidal particles of 100 nm without coarse-graining,
we have to solve the dynamics of all constituents including more than 1012 water
molecules. So, it is very difficult to reach even the Brownian diffusion time of a par-
ticle, τB ∼ 5 ms. To overcome this difficulty, a number of numerical schemes have
been developed: Lattice Boltzmann,12)–16) dissipative particle dynamics,17) stochas-
tic rotational dynamics,18),19) fluid particle dynamics (FPD)20),21) and smoothed
profile method.22),23) A common feature among these simulation methods is that
small, fast solvent molecules are treated in a coarse-grained manner. In such simula-
tions, coupled dynamics of relevant variables, particle positions, flow field and order
parameter(s) describing the complex fluid are numerically solved.
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In this paper, we show efficient numerical simulation methods for studying many
particle dynamics of colloids in soft matters. Our method is based on fluid particle
dynamics (FPD), which we developed to simulate the hydrodynamic interactions
between colloidal particles in a simple liquid.20),21) The method was used to study
the structural formation of colloids undergoing phase separation.20),21),24) The most
difficult problem in simulating colloids immersed in a solvent is the hydrodynamic
solid-fluid boundary conditions, which must be satisfied on the surfaces of all moving
particles. In FPD, we treat a solid particle as an undeformable fluid having larger
viscosity than the solvent. A smooth profile between a colloidal particle and the
solvent makes us free from the boundary conditions, as explained later. In the limit
of larger viscosity ratio between the outside and inside of the particle, the flow field
inside the particle becomes homogeneous so as to reduce viscous dissipation, and thus
the fluid particle can be regarded as the solid particle. In addition to this numerical
efficiency for calculating hydrodynamic interactions, FPD method has another merit,
i.e., an applicability to colloid-soft matter complexes. Since we solve the solvent as
a continuum field, we can easily introduce order parameters relevant to various soft
matter. Below we present the details of our FPD method and three applications.

§2. Fluid particle dynamics method

Here we briefly explain our FPD method.20),21) The key of our FPD method
is to treat a solid colloidal particle as an undeformable fluid particle, which has a
smooth interface. We express i-th fluid particle using a hyperbolic tangent function
as φi(r) = [tanh{(a− |r − ri|)/ξ}+ 1]/2, where a is the particle radius and ξ is the
interfacial width (see Fig. 1(a)). For the spatial distribution of particles given by
{ri}, the viscosity field can be expressed as η(r) = ηs +

∑
i(ηc − ηs)φi(r), where ηs

is the viscosity of the fluid surrounding particles and ηc is the viscosity inside the
particle. Note that η can be a tensor in the case of an anisotropic solvent. Then the
time evolution of v is described by the following Navier-Stokes equations,

ρ

(
∂

∂t
+ v · ∇

)
v = F −∇p+ ∇ · η{∇v + (∇v)T }, (2.1)

where ρ is the density. In the above, we assume that the density of colloidal particles
is the same as that of a liquid, namely, ρ is homogeneous in space. Pressure p is
determined to satisfy the incompressible condition ∇ · v = 0. F (r) is a force field
given by F (r) = F ′(r) + ΣiF

(0)
i φi(r)/V , where V =

∫
drφi(r). F

(0)
i is a direct

body force on i-th particle. To avoid the overlap of particles, we use the repulsive
part of the Lennard-Jones potential as the body force: F

(0)
i =

∑
j �=i f(ri−rj). Here

f(r) = −(∂/∂r)U0[(2a/|r|)12 − (2a/|r|)6] with |r| < 27/6a, where U0 is the strength
of this steric repulsion. And F ′(r) means the force field coming from the free energy
associating the soft matter under the consideration (see below). The time evolution
of the position of particle i, ri, is described by the average fluid velocity inside the
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Fig. 1. Description of a particle in the FPD method. (a) Profile of a smooth particle of the radius

a and width ξ. (b) Mapping of the particle onto a square lattice.

particle,

d

dt
ri =

1
V

∫
drv(r)φi(r). (2.2)

This is the framework of the original FPD model. It should be noted that the fluid
particle approximation becomes exact in the limit of ηc/ηs → ∞ and ξ/a→ 0.25)

We discretize the coarse-grained variables φi(r) and v(r) into the staggered
lattice by the interface width ξ (see Fig. 1(b)). And the hydrodynamic flow is
calculated by solving Eq. (2.1) with Makers and Cell (MAC) method.26) Particle
positions are updated by solving Eq. (2.2) in an off-lattice space with an explicit
Euler scheme. In order to reduce the inertia effect, we iterate Eq. (2.1), so as to
satisfy 〈|ρDv/Dt|〉/〈|F |〉 < Re, without updating particle positions. Here Re is a
non-dimensional parameter of the order of 10−2.

§3. Particle dynamics in soft matters

We introduced three types of order parameters into the coarse-grained solvent.
By solving the dynamic equations for the order parameters simultaneously, we can
simulate the coupled dynamics of colloids and soft matters. We simulated three
different soft matter complexes in a common way: (i) charged colloidal dispersion in
an ionic solution,27),28) (ii) particles in nematic liquid crystal29),30) and (iii) particles
in a phase-separating binary fluid.31),32) In the following, we will show some results
of our simulations.

3.1. Charged colloidal system

First we show results of a charged colloidal system, where ions are solved in
water.27),28) We denote the concentration and valence of ion species α by Cα and
zα, respectively. We express the charge density localized in the surface region of
particle i as ρi(r) = Ze|∇φi(r)|2/ ∫

dr|∇φi(r)|2, where Z is the number of charges
on a particle. The total charge density is then expressed as ρe(r) =

∑
i ρi(r) +∑

α ezαCα(r). In this paper, we consider a system composed of positively charged
colloids and two types of ions (+ and −). The charge neutrality condition is then
given by

∫
dr(z+C+ +z−C−+Zφ/V ) = 0. The salt concentration Cs is given by the

spatially averaged value of C+. The electrostatic potential Ψ satisfies the Poisson
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equation, εrε0∇2Ψ = −ρe, where εr is the relative dielectric constant and ε0 is the
permittivity of vacuum. The time evolution of the ion concentration field Cα is
described by33) (

∂

∂t
+ v · ∇

)
Cα = −∇ · Jα, (3.1)

where Jα = −DαCα∇μα/kBT is the flux of ion α induced by the gradient of the
chemical potential μα, where Dα is the diffusion constant of ion α, kB is Boltzmann’s
constant, and T is the temperature. The effective chemical potential μα is expressed
as μα = kBT lnCα + eZαΨ + kBTχαCα

∑
i φi. Here the first term comes from the

translational entropy of ions, the second one from the electrostatic contribution, and
the third one from the penalty for the ions entering the inner region of the particles.
χα is a parameter describing the interaction between the ions and the particle, which
is artificially introduced to prevent the ions from penetrating into the particles. The
force field F ′ in Eq. (2.1) stems from the electrostatic interaction and is expressed
as F ′ = −ρe(∇Ψ − E). E is an external electric field. Note that the direct force
F

(0)
i should not contain the Coulomb interaction since that is already included in

F ′. By setting ξ = be2/(4πε0kBT ), the ion concentration is also described in the
lattice space, where b is a numerical scaling factor (b � 0.2 in our simulations).

Figure 2(a) shows the simulated counter ion cloud around a single charged parti-
cle. Here, the electric field is applied vertically and the particle is moving downward.
The cloud of counter ions is distributed asymmetrically, and this asymmetry causes
the relaxation effect on the electrophoretic motion. The spatial distribution of ions
at rest is characterized by the Debye-Hückel parameter κ =

√
2z2e2Cs/(εrε0kBT ).

Our simulation is consistent with the analytical form of the ion distribution within
numerical accuracy. Figure 2(b) plots the profiles of the internal electric field Ψ along
the direction of the external field going through the center of a particle. Ψ at the par-
ticle surface corresponds to the zeta potential. Here, the particle is drifting toward
the left. When the salinity is low (small κa), the electric field is almost symmetric
around the particle. By adding salt, the profile of Ψ becomes sharper and more
asymmetric. −∇Ψ inside the particle represents the induced dipole. Interestingly,
the direction of the dipole is inverted at the critical salinity (κa ≈ 0.5 in this case).
This means that the polarization coefficient of the particle is changed from positive
to negative with an increase in κa. The force on the counter ion is opposite to that
on the particle. For a small κa, the ion cloud is slightly shifted to the backward as
shown in Fig. 2(a). The induced dipole is toward the same direction of the applied
electric field. For a large κa, on the other hand, counter ions are accumulated at the
front of the drifting particle. Thus the induced dipole is opposite to the direction of
the electric field. It is known that this inversion of the polarization is characterized
by the so-called Dukhin number,34) which is the ratio between the conductivity of
the ions in the bulk and that along the surface. The Dukhin number is a function
of ζ and κ. Our simulation is consistent with the theoretical prediction.35)

One of the merits of our numerical method is that we can study many body
effects in the dynamical behavior of a system. Figure 3 shows the snapshot of a 2D
colloidal dispersion in a non-equilibrium condition. At t = 0, we start to apply the
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Fig. 2. Electrophoresis of a single charged particle. (a) Simulated distribution of the counter ion.

The circle of the broken line represents the particle. (b) Profiles of the electric potential Ψ

around a driven particle.

Fig. 3. Simulated pattern evolution of a colloidal suspension under an electric field. At t = 0, we

start to apply the field.

field to the system. At the rest (t < 0), the charged particles repulsively interact
each other, so they are distributed homogeneously with hexagonal local positional
order. Under a weak field, particles move along the field rather homogeneously
(not shown here). Under a strong field, dynamical coupling of particle motion leads
to chaotic behavior. The coupling is produced by the hydrodynamic interaction
between particles, as in the sedimentation of non-Brownian particles.36) In contrast
to charge-free particles, the hydrodynamic interaction can be reduced by salt as in
the case of electrostatic interaction.37) This opens up a possibility of optimization
of the electrophoretic separation of particles and biomolecules, which was discussed
in detail elsewhere.28)

3.2. Particles immersed in nematic liquid crystal

To simulate particles suspended in a nematic solvent,29),30) we introduce a ne-
matic order parameter Qij

38) into the solvent. The free energy of a nematic liquid
crystal is given as

F{Qij, φ} =
∫
dr

{
f(Qij, φ) +

K1

2
(∂kQij)2

+
K2

2
(∂iQij)

2 −WξQij∂iφ∂jφ− EiEjQij

}
, (3.2)
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where repeated indices are implicitly summed over. The first term of Eq. (3.2) is
the free energy of a bulk nematic phase given by f(Qij, φ) = −1

2A (1 − 2φ)QijQji −
1
3BQijQjkQki + 1

4C (QijQji)
2, where B and C are the positive constants. A is

negative and positive above and below the transition, respectively. Note that even
below the transition, the inside of particles remains negative since A(1 − 2φ) < 0.
The second and third terms of Eq. (3.2) represent the Frank elasticity: K1 and K2

are their elastic moduli. The fourth term is the anchoring energy of the nematic
phase at the particle surface: W is the energetic cost of the anchoring per unit area.
The fifth term represents a coupling between an external (electric or magnetic) field
Ei and the director field.

Time evolution of Qij and v is then described by

DQij

Dt
= QikΩkj −ΩikQkj +

Hij

μ1
+
μ2Aij

2μ1
+ λij , (3.3)

ρ
Dvi

Dt
= Fi − φ∂iμ+Qjk∂iHjk

+∂j (HikQkj −QikHkj) − ∂ip+ ∂jΣij . (3.4)

Here, μ = δ
δφF and Hij = −

{
δ

δQij
F − 1

3δijδkl
δ

δQkl
F

}
are the effective chemical

potential for particle concentration φ and the molecular force field for nematic order
Qij , respectively.38) Aij = 1

2 (∂ivj + ∂jvi) and Ωij = 1
2 (∂ivj − ∂jvi) are symmetric

and asymmetric velocity gradient tensors. Σij = β1QijQklAkl +
(
β4(φ) − μ2

2
2μ1

)
Aij +

β5+β6

2 (QikAkj +AikQkj) − μ2

2μ1
Hij is a mechanical stress tensor for the flow field.

β1, β4, β5, β6, μ1, and μ2 are constants having a dimension of viscosity. In the
spirit of FPD, the shear viscosity depends on the particle configuration as β4 =
β̄4 +Δβ4φ(r).20) Here β̄4 and β̄4 +Δβ4 correspond to the shear viscosities outside
and inside a fluid particle, respectively. λij in Eq. (3.3) is the thermal fluctuation
for Qij . Here we impose the thermal fluctuation λij only for Qij for simplicity. We
assume that the density of a colloidal particle is the same as that of a host fluid;
thus, the density ρ is constant. The length, time, and force are normalized by the
characteristic length Ξ =

√
K1/A, characteristic rotational time tQ = μ1Ξ

2/K1,
and elastic modulus K1, respectively.

In this subsection, we employ the following parameters: the Reynolds number
Re = ρK1

ημ1
= 0.02, the ratio between the two Frank elasticity moduli K2/K1 = 0.5,

B/A = 25, C/A = 20, and W̃ = 10 (strong homeotropic anchoring). We denote
the degree of orientational order of the nematic phase as Q0 = B+

√
B2+24AC
6C . The

ratios between the viscosities of the nematic phase are as follows: μ1Q
2
0/η = 0.65,

− μ2

2μ1Q0
= 2.0, (β5+β6)Q0

2η = 0.06, and β1Q
2
0/η = 0.1, where η = β̄4 − μ2

2
2μ1

is a viscosity
for usual shear flow.

Particles suspended in a nematic liquid crystal interact to each other via the elas-
tic field of the anisotropic solvent. This interaction leads to some ordered structure of
intrinsically non-interacting particles.1),3) When the director field tends to be normal
to the particle surface (homeotropic anchoring), two types of defect structures are
formed depending on the particle size and the external field.3) Saturn-ring-like defect
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Fig. 4. Stable and metastable configurations of a particle pair in a nematic liquid crystal, due to a

quadruple symmetry (a) and a single stroke disclination (b).

is one of the two possible configurations. A particle accompanying the Saturn-ring
defect has a quadruple symmetry. Thus, it is expected that they interact to others
with the quadruple symmetry2),3) as shown in Fig. 4(a). In addition to this pairwise
interaction, we found a new type of interaction between particles with Saturn-ring
defects. Figure 4(b) shows the defect configuration around a pair of particles. Here
a single disclination line is shared by the two particles and has a shape of the figure
of eight. It tends to shrink to reduce the elastic energy and binds the particles, but
cannot cross itself due to the large energy barrier associated with the topological
change of the defect. This ‘figure of eight’ structure has higher energy than that of
quadruple interaction (Fig. 4(a)), so that it is not a stable configuration. Since the
energy barrier between these two configurations is higher than thermal fluctuation,
however, it can exist for an observable period.39) The mechanism is discussed in
detail elsewhere.29)

3.3. Phase-separating binary fluids containing particles

Next we show results of particles suspended in binary fluid mixtures.5),8)–10),16)

Generally, the particle surface favors one of the components (wetting effects). Bey-
sens and Estève found this wetting interaction leads to the flocculation of colloids
while approaching the phase-separation temperature even in a one-phase region.8)

One of us (H. T.) reported the addition of particles can be used to control the mor-
phology of phase-separation patterns.9) Even when the two components equally wet
particles, particles tend to sit on the interface between the two coexisting phases.
This leads to an intriguing glassy behavior of the system: glassy Pickering emul-
sions.5),16)

The coarse-grained variable relevant for the physical description of phase-
separation dynamics of a fluid mixture is the concentration field ψ. We employ
the following free energy functional for a binary mixture containing particles:

F{ψ, φ} =
∫
dr

[
f(ψ) −Wξψ|∇φ|2 − χΔψ2φ

]
. (3.5)

The first term of the right hand side (r.h.s.) of Eq. (3.5) corresponds to the Ginzburg-
Landau-type mixing free energy of a binary mixture with f(ψ) = τψ2/2 + uψ4/4 +
K|∇ψ|2/2, where τ , u and K are constants (note that τ > 0 before quench, t < 0).
The second term stands for the wetting interaction between a binary mixture and a
particle surface (represented as |∇φ|2 in our scheme). W represents the strength of
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Fig. 5. Time evolution of a particle pair in a phase separating binary fluid. At t = 0, we quench

the system from the one-phase to the two-phase region.

this wetting interaction; here W > 0 means that the phase of ψ > 0 favors a particle
surface. The third term is introduced such that the concentration field inside each
particle becomes ψ ≈ ψ̄, where χ(> 0) is its coupling constant and ψ̄ is the average
of ψ. Note that Δψ = ψ − ψ̄.

The time development of ψ is described by

∂ψ

∂t
= −v · ∇ψ + L∇2μ, (3.6)

where μ is the chemical potential defined as μ = δF/δψ. L is the kinetic coefficient,
which is assumed to be independent of ψ. The osmotic pressure is introduced by
F ′ = −φ∇μ in the hydrodynamic equation (2.1). The characteristic length and time
of phase separation are given by � = (−K/τ)1/2 and t� = �2/L, respectively. To fix
i-th particle around a position rf

i by a spring, we add κ(ri − rf
i ) to F

(0)
i , κ is a

spring constant. We set the parameters as u = 1, K = 1 and L = 1. And interface
width of the smooth particle is set to ξ = �. The other parameters are set as ξ = 1,
ε = 1, χ = 2, and W = 8.

Figure 5 demonstrates that a strong attractive interaction acts on a particle pair
in a phase-separating binary fluid mixture. In the early stage of phase separation,
the component more wettable to particles diffuses toward the particle surfaces to
cover them. Since the diffusion flux is isotropic for an isolated particle, the osmotic
force is canceled by pressure under the incompressible condition and thus does not
cause hydrodynamic flow. When two particles are placed nearby, on the other hand,
the diffusion flux becomes anisotropic around each particle because of the depletion
of the more wettable phase between the particles. The osmotic force can no longer
be canceled by pressure, and pushes a particle to the other. We showed that this
wetting-induced depletion force can be stronger than a van der Waals interaction
and a capillary force,33) which is induced by the interface tension. The details of the
mechanism were discussed elsewhere.31)

§4. Summary

We developed new numerical methods for studying colloids or nanoparticles
suspended in complex fluids, on the basis of FPD method, which can deal with hy-
drodynamic interaction between colloidal particles without suffering from complex
hydrodynamic boundary conditions. We applied the methods to simulate the three
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types of soft matter complexes: (i) charged colloidal dispersion in an ionic solution,
(ii) particles in nematic liquid crystal, and (iii) particles in a phase-separating bi-
nary fluid. In all the examples, dynamical couplings among the relevant variables,
particles, flow, and the order parameter, lead to very rich and interesting behavior,
which we showed are physically reasonable. So our method may be used to explore
new interesting static and dynamic features in non-equilibrium soft matter.
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8) D. Beysens and D. Estève, Phys. Rev. Lett. D 54 (1985), 2123.
9) H. Tanaka, A. J. Lovinger and D. D. Davis, Phys. Rev. Lett. 72 (1994), 2581.

10) H. Tanaka, J. of Phys.: Cond. Mat. 13 (2001), 4637.
11) A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U. Egelhaaf and P. Schurten-

berger, Nature 432 (2004), 492.
12) A. J. C. Ladd, J. Fluid. Mech. 271 (1994), 285.
13) J. Horbach and D. Frenkel, Phys. Rev. E 64 (2001), 061507.
14) A. Chatterji and J. Horbach, J. Chem. Phys. 122 (2005), 184903.
15) V. Lobaskin, B. Dünweg, M. Medebach, T. Pelberg and C. Holm, Phys. Rev. Lett. 98

(2007), 176105.
16) K. Stratford, R. Adhikari I. Pagonabarraga, J. C. Desplat and M. E. Cates, Science 309

(2005), 2198.
17) V. Lobaskin, B. Dünweg and C. Holm, J. of Phys.: Cond. Mat. 16 (2004), S4063.
18) A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999), 8605.
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